Combinations in oncohematology

Luca Mazzarella, MD PhD

Early Drug Development Unit Department of Experimental Oncology European Institute of Oncology - Milan

Timeline | The history of chemotherapy

Louis Goodman and Attrad Gilman use nitrogen mustard to treat a patient with non- Hodgldri's lymphoma and demonstrate for the first time that chemotherapy can induce tumour regression.	The National Chemotherapy Program begins at the National Cancer Institute (NCI); a systematic programme for drug screening commences.	The Food and Drug Administration (FDA) approves the alkylating agent cyclophosphamide.	Vincent DeVita and colleagues oure lymphomas with combination chemotherapy	mbination of ophosphamide, otrexate and suracti (CMF) was in to be effective ijuvant treatment side-positive st cancer.	The NCI introduces 'disease criented' screening using 60 cell lines derived from different types of human fumour.	Studies by Brian Druker lead to FDA approval of imathib mesytate (Gilvec) for chronic myelogenous leukaemia, a new paradigm for targeted therapy in oncology.	The FDA approves bevacizumab (Avastin), the first cancally proven anti- angiogenic agent, for the treatment of colon cancer.
1942 1948	1955 1958	1959 1965	1970 1972	1975 1978	1969 19	92 2001 :	2004
syndey Fabor Uses F antifoliates to c successfully induce f temissions in a children with acute c lymphoblastic s leukaemia (ALL).	temonstrate that nethotrexate as a single igent can cure thoriocarcinoma, the first cold tumour to be cured by themotherapy.	chemotherapy (POMP regimen) is able to induce long- term temissions in children with ALL.	demonstrate that chemotherapy given after surgical removal of osteosarcoma can improve cure rates (adjuvant chemotherapy)	cisplatin for the treatment of ovi cancer, a drug would prove to activity across a range of solid to	arian that have a broad imours,	proves axol), define mutat mes the uster' ug, targeted age that molecul able to prosp subsets of p mespond to t	at Hervard University ions in the epidermal r receptor that confer ponsiveness to the nt gattinib, indicating ar testing might be sectively identify attents that will availed asserts

The rationale for combination: tumor heterogeneity

Koren and Bentjres-Ali, Mol Cell 2015

How to design combinations?

"Two is meglio che one"

More or less random

"Perfect match"

More or less rational

BRAF+MEK inhibition: a very rational combination

Su et al NEJM 2015 Long et al Lancet 2015

The mother of all immuno combinations: CTLA4+PD1

Buchbinder et al Am JCO 2016

The mother of all immuno combinations: CTLA4+PD1

- Other tumors:
- NSCLC
- Colorectal
- Kidney

Larkin NEJM 2019

More efficacy, more toxicity

Xu et al Front Pharmacol 2019

The evolving landscape of "Next Generation" Immune Modulators

Mazzarella et al Eur J Canc 2019

The evolving landscape of "Next Generation" Immune Modulators

General principle of immuno-oncology combinations: turn cold into hot

- Chemo
- Targeted therapy
- Radio
- Intralesional/vaccine/oncolytic
- CAR-T

Chemo

- Targeted therapy
- Radio
- Intralesional/vaccine/oncolytic
- CAR-T

Lung cancer

Gandhi NEJM 2018

- Chemo
- Targeted therapy
- Radio
- Intralesional/vaccine/oncolytic
- CAR-T

BRAFi+ MEKi+ PD1 in Melanoma

- Chemo
- Targeted therapy
- Radio
- Intralesional/vaccine/oncolytic
- CAR-T

Lung cancer PACIFIC

- Chemo
- Targeted therapy
- Radio
- Intralesional/vaccine/oncolytic
- CAR-T

Oncolytic virus (T-VEC)+ PD1

Ribas et al Cell 2017

- Chemo
- Targeted therapy
- Radio
- Intralesional/vaccine/oncolytic
- CAR-T

Lymphoma, CD19 CART+ Pembro

Hill et all Bone Marr transp 2019

A WORD OF CAUTION

Cell

Combination Cancer Therapy Can Confer Benefit via Patient-to-Patient Variability without Drug Additivity or Synergy

в

Patients (%)

С

PFS (months)

Median

15

Progression free survival (months)

Combination anti–CTLA-4 plus anti–PD-1 checkpoint blockade utilizes cellular mechanisms partially distinct from monotherapies

Spencer C. Wei^a, Nana-Ama A. S. Anang^a, Roshan Sharma^{b,c}, Miles C. Andrews^d, Alexandre Reuben^d, Jacob H. Levine^b, Alexandria P. Cogdill^{a,d}, James J. Mancuso^a, Jennifer A. Wargo^{c,d,e}, Dana Pe'er^{b,f}, and James P. Allison^{a,g,1}

BIOMARKERS!!!!!

Targeting therapy improves efficacy

Benefit for drug development

Published in: Maria Schwaederle; Melissa Zhao; J. Jack Lee; Alexander M. Eggermont; Richard L. Schilsky; John Mendelsohn; Vladimir Lazar; Razelle Kurzrock; JCO 2015, 33, 3817-3825. DOI: 10.1200/JCO.2015.61.5997

Copyright © 2015 American Society of Clinical Oncology

Benefit for patients

Increasing use of biomarkers in immuno-oncology trials

Mazzarella et al under review 2019

Immunotherapy biomarkers. Mutational load

In NSCLC with Pembrolizumab (Rizvi et al 2015)

In colorectal with Pembrolizumab MSI-Hi vs MSI-Lo (Le NEJM 2015)

In Melanoma with Ipilimumab (Snyder NEJM 2014)

Immunotherapy biomarkers. Host immune status

Neutrophil-to-Lymphocyte ratio In Melanoma treated w Ipilimumab (Ferrucci BJC 2015)

MDSC in Melanoma treated w Ipilimumab (Kitano Canc Imm Res 2014)

Immunotherapy biomarkers. Immune cell infiltration

esponse (N = 22) Temout Imrasive mergin 11,000 11,000 CD8 Infiltrate 9,500 9,500 Present at diagnosis 8,000 8.000 CDE⁺ density (cells 6,500 6.500 In responders 5,000 5.000 3,500 3 500 2,000 2.000 500 500 Before Ta Dave +20-60 Progression (N = 24 d Tumour Investve margin 11,000 11,000 CD8 Infiltrate 9,500 9.500 2001 density (cela mm-Absent at diagnosis 8,000 8.000 6,500 6.500 In non-responders 5,000 5,000 3,500 3,500 2,000 2,000 500 500 Before Ta Days +20-60

Immune cell infiltration

CD8 but not CD4 infiltrate Correlates with response

Immune cell infiltration and clonality

CD8 but not CD4 infiltrate Correlates with response

T cell clonality Correlates with response

Immunotherapy biomarkers. Checkpoint expression

CD8 but not CD4 infiltrate Correlates with response

T cell clonality Correlates with response

PD1 / PD-L1 expression Correlates with response

No single parameter is perfect

CD8 but not CD4 infiltrate Correlates with response

T cell clonality Correlates with response

PD1 / PD-L1 expression Correlates with response

No single parameter perfectly discriminates responders from non-responders

Immunotherapy biomarkers. HLA loss

HLA expression

HLA negative HLA positive Low CD8 infiltrate High CD8 infiltrate

Low HLA expression in 61% pancreatic tumors

Correlates with low CD8 infiltrate

CD8 expression

Ryschich Clin Can Res 2005

Immunotherapy biomarkers. HLA mutations

Spectrum of mutations is different than non-HLA muts

HLA-mutated tumors are associated with NK transcriptional signature

Shukla Nat Biotech 2015

The cancer immunogram: nice but still far from real-life application

HOW TO INCORPORATE ALL THIS INFO IN DRUG DEV?

Master protocols and adaptive designs to accelerate development

* HER2 positive participants will also receive Trastuzumab. An investigational agent may be used instead of Trastuzumab.

Immuno combo trials are increasingly conducted with multiple drugs

Mazzarella et al under review 2019

Take home messages

- Combo design should be based on **specific rationale**, but this is not always possible
- Ways to accelerate:
 - Enhance **translational and preclinical** research to identify putative biomarkers
 - Incorporate biomarkers early in development, possibly phase 1
 - Use adaptive designs to accelerate early development
 - Use master protocols with fixed backbone if multiple combos are hypothesized
 - Carefully look at **toxicity**

Intro 1 Diarrhea and Colitis: the US NIH NCI Perspective The CTCAE v.5 of IMDC

Intro 2

The current management of IMDC

Results: who has an increased risk?

Abu-Sbeih H et al, J Clin Oncol 2019

Thank you

Looking for postdocs

Luca.mazzarella@ieo.it